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Abstract

In this paper, the optimal performance of a magnetorheological (MR) damper which is used in a tuned
mass damper in reducing the peak responses of a single-degree-of-freedom structure subjected to a broad
class of seismic inputs including the harmonic, pulse, artificially generated and recorded earthquake
excitations are studied. The optimal semiactive control strategy minimizes an integral norm of the main
structure squared absolute accelerations subject to the constraint that the non-linear equations of motion
are satisfied and is determined through a numerical solution to the Euler–Lagrange equations. The optimal
performance evaluated for an MR damper is compared to an equivalent passive-tuned mass damper with
optimized stiffness and damping coefficients. It is shown numerically that the optimal performance of the
MR damper is always better than the equivalent passive-tuned mass damper for all the investigated cases
and the MR damper has a great potential in suppressing structural vibrations over a wide range of seismic
inputs.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

New civil engineering structures tend to be lighter, more slender and have smaller natural
damping capacity than those of their older counterparts. This trend has increased the importance
of damping technology to mitigate earthquake and wind-induced vibrations. The most widely
applied means of suppressing the excessive structural oscillations is the passive-tuned mass
damper. This damper consists of a small oscillator attached to a primary system. For the purpose
of energy transfer from the primary system to the auxiliary system, which has only a fraction of
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the primary system mass, the natural vibration period of the damper is selected close enough to
the primary system’s natural period. The passive-tuned mass damper, otherwise known as
vibration absorber was first used by Frahm [1] to suppress the rolling motion of ships. Later,
Ormondroyd and Den Hartog [2], Brock [3] and Den Hartog [4] used passive-tuned mass dampers
for the reduction of the vibration of single-degree-of-freedom systems. The parameter
optimization of the passive-tuned mass dampers were studied by Hahnkam [5], Crandall and
Mark [6], Warburton [7] and Tsai and Lin [8]. A list of structures installed with passive-tuned
mass dampers has been given by Holmes [9]. However, it is known that passive-tuned mass
dampers have some problems: They cannot adapt themselves to changing vibration characteristics
of the primary structure and lose their performance in vibration control.
In order to overcome the foregoing drawbacks of passive-tuned mass dampers, the active-tuned

mass damper, which requires a prescribed active control algorithm and external power supply to
generate the control force that drives the auxiliary mass, was first studied by Morison and
Karnopp [10]. However, the first active-tuned mass damper studies in the civil engineering field
were made by Lund [11], Chang and Soong [12] and Udwadia and Tabaie [13]. Even though
active-tuned mass dampers are more effective than passive ones in vibration control, the
dependency of actively controlled systems on the external energy source is a disadvantage since
power failure is always possible during strong earthquakes. In addition, their operational costs are
high and they need actuators and pumps. A possible alternative device other than passive- and
active-tuned mass dampers is a semiactive-tuned mass damper with variable damping and/or
stiffness characteristics. It is a new class of tuned mass damper, which has low external energy
requirements and low operational costs and it controls the states of the system such that the
damping performance is maximized. Hrovat et al. [14] and Abe [15] used semiactive-tuned mass
dampers to suppress wind and earthquake-induced vibrations of structures.
Among several semiactive devices, magnetorheological (MR) dampers have a number of

attractive characteristics, making them promising for vibration control applications. MR fluids
are materials that respond to an applied magnetic field with a dramatic change in rheological
behavior and have ability to reversibly change from a free-flowing, linear viscous state to a semi-
solid state having a controllable yield strength in milliseconds. MR dampers can be controlled
with a low power (e.g., less than 50W), low voltage (e.g.,B12–24V), current-driven power supply
outputting only B1–2A, which could be supplied by batteries [16–19] and are capable of
generating large control forces required for full-scale applications. Furthermore, in contrast to
servo-valve-based devices, MR dampers do not require intricate moving parts. Recent
studies show that MR dampers appear to have significant potential for hazard mitigation
[20–28].
However, civil engineering structures incorporating semiactive devices exhibit non-linear

behavior and except for relatively few special cases, the mathematical theory of non-linear
oscillations provides little help for practical non-linear vibration control problems [29]. As is well
known, the optimal control problem of a linear system with respect to a quadratic performance
index has a flexible solution which leads to the construction of a linear state regulator when there
are no constraints on admissible controls [30–34]. For the case of non-linear non-autonomous
dynamical systems, the situation is much more complicated. The difficulties in synthesizing
optimal feedback controls for non-linear systems have motivated many researchers to use the
formalism of the optimal control theory to derive sub-optimal feedback controllers by obtaining
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the approximate solutions to either the two-point boundary-value problem or the Hamilton–
Jacobi–Bellman equations.
It is noted here that the evaluation of the exact optimal solutions is important for basically three

reasons. Firstly, the ideal best performance achievable by an intrinsically non-linear semiactive
device can be obtained only by the exact optimal solution of the corresponding non-linear
structure. Secondly, the exact optimal solutions are evaluated in order to check the real optimality
of the proposed causal sub-optimal control schemes. Lastly, a careful analysis of the optimal
response and control trajectories may help us to improve the proposed algorithms, or to develop
better non-linear control rules. This paper is focused basically on the first reason and very little on
the third reason.
In this paper, an MR damper is used in a tuned mass damper to suppress the vibration of a base

excited single-degree-of-freedom system. The closed-loop dynamics of structures with semiactive
control systems are non-linear due to the parametric nature of the control actions. Since these
non-linearities prevent the direct evaluation of Laplace transforms, frequency response functions
for semiactively controlled investigated system are compiled from the computed time history
response to sinusoidal and pulse-type seismic excitations. To be able to measure the optimal
performance of MR damper under seismic excitations of random characteristics other than pure
harmonic and pure pulse type, a broad class of recorded earthquakes and a simulated earthquake
are also used as seismic inputs to the structure.
An optimal, yet non-causal, semiactive controller is derived from the solution to the Euler–

Lagrange equations for an MR damper modelled by an algebraic expression. The numerical
solution to the Euler–Lagrange equations is obtained using a gradient approach which is a
numerical optimization technique [35]. The Euler–Lagrange solution establishes the maximal
performance of a dynamically excited and semiactively controlled structure, subjected to the
constraints imposed by the particular MR damper. The objective function in the Euler–Lagrange
equations is the squared absolute acceleration of the primary structure. The results for optimal
semiactive control are compared to those of the equivalent passive-tuned mass damper.
Numerical results show that an optimally controlled semiactive-tuned mass damper with an MR
damper has a great potential for suppressing base excited vibrations and always outperforms the
equivalent passive-tuned mass damper for a wide range of seismic inputs. This will help and
encourage the researches to develop better sub-optimal causal control algorithms.

2. Governing equations of motion of the system

This paper examines the optimal response of a single-degree-of-freedom primary structure, to
which an auxiliary mass m is attached through a controllable fluid device (i.e., an MR damper) as
shown in Fig. 1. The primary system supported by a rigid foundation is assumed to be linear and
is represented by a spring in parallel with a linear viscous dash-pot.
The primary structure mass, stiffness and damping coefficients are represented by M, k1, and c1,

respectively. Structural relative displacements and the ground displacement are denoted by r1, r2
and z, respectively. The harmonic ground acceleration is given by

.zðtÞ ¼ ZðoÞj jsinðotÞ ð1Þ
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in which o is the forcing frequency and the spectral amplitude jZðoÞj is generated from the Kanai–
Tajimi power spectral density function

jZðoÞj ¼
500ðo=o1Þ

2

½1� ðo=o1Þ
2 þ 2ir1ðo=o1Þ�

1þ 2irgðo=ogÞ

½1� ðo=ogÞ
2 þ 2irgðo=ogÞ�

�����
����� ð2Þ

and the parameters are rg ¼ 0:6; r1 ¼ 0:6; og=15.6 and o1=1.0 rad/s [36]. The parameters rg; og

may be considered as some characteristic damping ratio and characteristic ground frequency,
respectively.
For pulse-type excitations, the structure is assumed to be excited by transient pulses of different

periods and amplitudes. The symmetric pulse acceleration of period Tpl and amplitude Apl is given
by

.zðtÞ ¼
ðA1=2Þ 1� cos p

t

T1

� �� �
; 0otoT1;

Apl þ A1

2
cos p

t � T1

Tpl=2� T1

� �
þ

A1 � Apl

2
; T1otoTpl=2;

8>>><
>>>:

ð3Þ

where A1 ¼ .zðT1Þ is the first peak ðat t ¼ T1 ¼ �½ðA1 � AplÞTpl=ð2AplÞ�Þ and is set to Apl/1.7 here.
Pulse velocities and pulse displacements are obtained by integrating (3) analytically. The pulse
periods and the corresponding amplitudes used in this study are Tpl=5.0, 1.67, 1.0, 0.71 and 0.5 s;
Apl ¼ jZðoplÞj ¼ 4:920; 5.377, 5.781, 6.306 and 6.774m/s2 where opl=2p/Tpl. Since the tuned mass
dampers are only effective for lightly damped primary structure, the mass, stiffness and the
damping coefficients of the investigated primary structure are selected as M=100	 103 kg,
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k1=400p2	 103N/m, c1=13	 103N/m/s. The MR damper implemented exhibits controllable
stiffness and damping and is modelled by the following algebraic expression with six parameters:

fMR ¼ fsa þ fp; ð4Þ

where

fsa ¼ u½Fmin þ ðFmax � FminÞHðuÞ� tanh
r2 � r1

dd

þ
’r2 � ’r1

vd

� �
; ð5Þ

fp ¼ k0ðr2 � r1Þ þ c0ð’r2 � ’r1Þ; ð6Þ

in which the constant device displacement and velocity parameters dd and vd are used to describe
the pre-yield behavior of the device, Fmin and Fmax are minimum and maximum values for
controllable yield force, k0 and c0 describe the post-yield behavior and the behavior when u=0,
H(u) is the Heaviside step function of u. These parameters can also be used to represent an ER
damper [37–39]. Since the MR device connects a small auxiliary mass m to a much larger primary
mass M, the energy flow between the masses can be regulated by the control variable u resulting
from a prescribed control scheme. In this paper, the control decision variable u is changed
optimally based on the exact solutions of the Euler–Lagrange equations.
When there is no control action (u=0), the semiactive force component becomes zero, fsa=0,

and the MR damper force equals the passive force component, fMR=fp. In this case, the auxiliary
system serves as a passive-tuned mass damper. The following notations are introduced to define
the optimized parameters of the passive-tuned mass damper:

Circular frequency of the primal system : op ¼

ffiffiffiffiffiffi
k1

M

r
; ð7Þ

circular frequency of the auxiliary system : oa ¼

ffiffiffiffiffi
k0

m

r
; ð8Þ

frequency ratio : x ¼
oa

op

; ð9Þ

mass ratio : m ¼
m

M
; ð10Þ

damping factor : B ¼
c0

2moa

: ð11Þ

Parameter optimization of the passive-tuned mass damper results in the following expressions for
xopt and Bopt [40]:

The optimum tuning frequency : xopt ¼
1

1þ m
; ðk0Þopt ¼ mðxoptÞ

2ðopÞ
2; ð12Þ

The optimum damping factor : Bopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m3

8ð1þ mÞ3

s
; ðc0Þopt ¼ 2mxoptopBopt: ð13Þ

When the control variable ma0, the auxiliary system works as a semiactive-tuned mass damper.
MR damper parameters in this study are Fmin=10N, Fmax=100	 103N, dd=0.05m, vd=0.04m/s.
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The non-linear system of dynamical equations of the two-degree-of-freedom structure with an
MR damper can be expressed as

’xðtÞ ¼ Axþ gðx; uÞu þ h.zðtÞ; xðt0Þ ¼ 0; ð14Þ

where

x ¼

r1

r2

’r1

’r2

8>>><
>>>:

9>>>=
>>>;
; A ¼

0

0

�
ðk1 þ k0Þ

M
k0

m

0

0

k0

M

�
k0

m

1

0

�
ðc1 þ c0Þ

M
c0

m

0

1
c0

M

�
c0

m

2
66666664

3
77777775
; h ¼

0

0

�1

�1

8>>>><
>>>>:

9>>>>=
>>>>;
; ð15Þ

gðx; uÞ ¼

0

0

½Fmin þ ðFmax � FminÞHðuÞ� tanh
r2 � r1

dd

þ
’r2 � ’r1

vd

� �
1

M

� �

�½Fmin þ ðFmax � FminÞHðuÞ� tanh
r2 � r1

dd

þ
’r2 � ’r1

vd

� �
1

m

� �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
: ð16Þ

3. Optimal semiactive control

In this section, firstly optimality conditions for a general non-linear system and then a
numerical solution approach to the resulting Euler–Lagrange equations will be presented.
Consider a completely observable and controllable non-linear system whose behavior is modelled
by a first order system of differential equations, subjected to control actions u(t), disturbance qðtÞ
and with initial conditions x0; in the state variable form

’xðtÞ ¼ fðxðtÞ; uðtÞ; qðtÞ; tÞ; xðt0Þ ¼ x0; xARn; uARm; qARs; ð17Þ

where x(t) is the state vector and the vector f is a given function of the state vector x(t), the control
vector u(t), disturbance vector qðtÞ and the time t. The most general cost function to be minimized
is defined as

J ¼ f½xðtf Þ; qðtf Þ; tf � þ
Z tf

t0

L½xðtÞ; uðtÞ; qðtÞ; t� dt; ð18Þ

where f is a scalar algebraic function of the final state x(tf ), final disturbance qðtÞand time t, and
the integrand L is scalar and generally called the Lagrangian. However, since the disturbance qðtÞ
is assumed to be known a priori function of time in the whole control interval [0, tf ], the system
dynamics (17) and the cost function (18) can be expressed as

’xðtÞ ¼ fðxðtÞ; uðtÞ; tÞ; xðt0Þ ¼ x0; xARn; uARm; ð19Þ
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J ¼ f½xðtf Þ; tf � þ
Z tf

t0

L½xðtÞ; uðtÞ; t� dt; ð20Þ

respectively, without loss of generality [35,41]. Since the system given by Eq. (19) is forced by qðtÞ
and the right-hand sides depend explicitly on time t [42], the system is non-autonomous and
Eq. (19) represents the non-autonomous systems which are studied in this paper.
The minimization of the cost function (20) subjected to the constraint of the dynamical system

equation (19) employs an augmented cost function

JA ¼ f½xðtf Þ; tf � þ
Z tf

0

½LðxðtÞ; uðtÞ; tÞ þ kTðtÞðfðxðtÞ; uðtÞ; tÞ � ’xðtÞÞ� dt; ð21Þ

where the Lagrange multipliers kðtÞ; whose purpose is to ensure that the dynamical system
equation (19) is taken into account in the minimization process, is commonly referred to as the
costate vector. To summarize the most important results, introduce the Hamiltonian

HðxðtÞ; uðtÞ; kðtÞ; tÞ ¼ LðxðtÞ; uðtÞ; tÞ þ kTfðxðtÞ; uðtÞ; tÞ: ð22Þ

Substituting Eq. (22) into Eq. (21), JA can also be rewritten as

JA ¼ f½xðtf Þ; tf � þ
Z tf

0

½HðxðtÞ; uðtÞ;kðtÞ; tÞ � kTðtÞ ’xðtÞ� dt: ð23Þ

Setting the first variation of JA to zero results in the following necessary conditions of optimality
known as the Euler–Lagrange equations [35]:

’kðtÞ ¼ �
@H

@x

� �T

¼ �
@fðx; u; tÞ

@x

� �T
kðtÞ �

@Lðx; u; tÞ
@x

� �T
; t0ototf ; ð24Þ

@H

@u
¼ kTðtÞ

@fðx; u; tÞ
@u

þ
@Lðx; u; tÞ

@u
¼ 0; t0ototf ; ð25Þ

@f½xðtf Þ; tf �
@x

� kðtf Þ
� �T

dxðtf Þ þ Hðxðtf Þ; uðtf Þ; kðtf Þ; tf Þ þ
@f½xðtf Þ; tf �

@t

� �
dtf ¼ 0: ð26Þ

The system of equations given by the state equation (19), the costate equation (24), the gradient
equation of the Hamiltonian (25) and Eq. (26) for boundary conditions provide the necessary
conditions, but not the sufficient conditions in general, for the optimal solution for x(t), u(t) and
k(t). Eq. (26) implies that the final state x(t) and the final time tf are free. As a special case, if the
final time tf is fixed and the algebraic function f is assumed to be zero, then the final boundary
condition for the costate equation (24) is obtained as kðtf Þ ¼ 0: Eq. (25) is not valid when there are
restrictions on the set of admissible controls u(t) such as actuator saturations.
Eqs. (19) and (24) define a two-point boundary-value problem since x(t) is specified at t=t0 and

k(t) is specified at t=tf. The gradient equation of the Hamiltonian (25) involves the costate vector
k(t), which is determined by integrating the costate equation (24) backward in time. For the non-
autonomous systems such as earthquake and wind excited structures under control, disturbance
must be known a priori in control interval [t0, tf]. Even though the earthquake excitation can be
measurable at the current time t, it cannot be known a priori. Consequently, only sub-optimal
solutions can be obtained for these type of structures. Simultaneous solution of the coupled state
and costate equations throughout the control interval can be complicated for non-autonomous

ARTICLE IN PRESS

U. Aldemir / Journal of Sound and Vibration 266 (2003) 847–874 853



systems. The method of successive approximation is used here to converge upon the optimal
controls, state and costate trajectories for a general non-linear case.

4. Numerical solution of the Euler–Lagrange equations

To obtain the optimal state trajectory x(t), costate trajectory kðtÞ and the corresponding control
actions u(t), Eqs. (19) and (24) are solved successively. In this paper, a gradient approach in which
the state and costate equations are solved based on the iterations made on the control function
u(t) is used. The first step of the approach is to specify initial conditions and guess an initial
control trajectory u0(t) for the control interval [t0, tf]. Forward integration of the state equation
(19) in time gives the corresponding state trajectory x0(t). To evaluate the numerical solution of
the system sensitivity matrices @f=@x and @f=@u and Lagrangian gradients @L=@x and @L=@u for a
given trial control trajectory u0(t) and the corresponding state trajectory x0(t); the following
Jacobian matrix is used:

@FðtÞ
@v

¼

@fðtÞ
@x

� �
nxn

@fðtÞ
@u

� �
nxm

@LðtÞ
@x

� �
1xn

@LðtÞ
@u

� �
1xm

2
6664

3
7775; ð27Þ

where

F ¼
’x

’J

( )
¼

fðxðtÞ; uðtÞ; tÞ

LðxðtÞ; uðtÞ; tÞ

" #
; v ¼

x

u

( )
: ð28Þ

It should be noted here that these partial derivatives in Eq. (27) can only be calculated for
specified values of x(t)=x0(t) and u(t)=u0(t). Upon calculating @f=@x; @f=@u; @L=@x and @L=@u
numerically from Eqs. (27) and (28), the costate vector k0(t) is obtained from backward
integration of Eq. (24), and @H=@u is found from Eq. (25). The control trajectory uk(t) is then
updated in the direction of steepest descent

ukþ1ðtÞ ¼ ukðtÞ � Kk

@H

@uk

ðtÞ; ð29Þ

where Kk is a scalar gradient gain. Appropriate choice of the update gain Kk is important to
achieve a rapid convergence to the optimal control trajectory. In this paper, the gradient gain
which maximizes the reduction in J is found using a bisection method. The iterations continue until
the cost function J is not reduced significantly, or until @H=@u becomes small as compared to uk(t).

5. Generation of the simulated earthquake

An homogeneous random process with zero mean and spectral density S(o) can be simulated
by the following series as [43]:

f ðtÞ ¼
XN

m¼1

Am cosðomt þ fmÞ; ð30Þ
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where

Am ¼ ½2SðomÞdo�1=2; om ¼ mdo; do ¼ ou=N; ou ¼ 2p=dt; ð31Þ

in which fm denotes the angles distributed uniformly between 0 and 2p; ou is the upper cut-off
frequency and N is a sufficiently large positive number. In order to take advantage of the fast
Fourier transform (FFT), Eq. (30) can be written in the following form:

f ðpdtÞ ¼ Re
XM�1

n¼0

Bne
inp2p=M

( )
; p ¼ 0; 1; 2; :::;M � 1; MX2N; ð32Þ

where

Bn ¼
ffiffiffi
2

p
2SðndoÞdo½ �1=2eifn : ð33Þ

Instead of using Eq. (30) including just summation of cosines, the FFT technique can be used on
Eq. (32), which results in the reduction of computer time. To be able to take advantage of FFT
technique, M must be an integer power of 2 and given as M=2m where m is a positive integer. In
this study, artificial ground acceleration is modelled as a uniformly modulated non-stationary
random process with zero mean by multiplying a deterministic non-negative modulating function
s(t) and a stationary zero mean Gaussian process f(t) (obtained from Eq. (32)) with a power
spectral density function S(o) given below

SðoÞ ¼
1þ 4x2gðo=ogÞ

2

½1� ðo=ogÞ
2�2 þ 4x2gðo=ogÞ

2
S2
0; ð34Þ

where the parameters og, xg and S0 related to the intensity and the characteristics of earthquakes
at a particular geological location represent the predominant frequency, damping factor of subsoil
layers and the power spectrum at o=0, respectively. The selected modulating function is given as

sðtÞ ¼ ðt=t1Þ
2; 0ptpt1;

sðtÞ ¼ 1; t1ptpt2;

sðtÞ ¼ e½�cðt�t2Þ�; t > t2; ð35Þ

in which t1, t2 and c are usually given by regression analysis using many strong-motion records.
They reflect the shape and the duration of the earthquake. The specific values for these parameters
used in this paper are as follows:

t1 ¼ 4 s; t2 ¼ 14 s; c ¼ 0:26 s�1; og ¼ 18:85 rad=s;

xg ¼ 0:65 and S2
0 ¼ 0:00045m2=s2: ð36Þ

6. Numeric analysis

Even though an algebraic model is used in this paper for the MR damper, there are many other
hysteretic models developed independent of each other based on different behavioral, physical, or
mathematical motivations [44]. For instance, Bingham viscoplastic model [45] consists of a
viscous damping term in parallel with a yield force controllable by a voltage signal applied to the
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electromagnets in the MR damper. Bouc–Wen model [46,47] is another model used for MR
dampers [48] and can exhibit a wide variety of hysteretic behavior. Spencer et al. [48] also
proposed a phenomenological model. Optimal performance achievable for each MR model can be
obtained for several inputs of different characteristics using the optimal control scheme given in
Sections 3 and 4 and then the resulting optimal performances can be used to compare the model
performances, or using a constraint optimization scheme, the appropriate parameters for each
model can be determined. However, since this paper is basically focused on the optimal
performance of semiactive-tuned mass dampers incorporating an MR damper modelled by an
algebraic expression with specified parameters, comparison of optimal performances of different
MR models is beyond the scope of this paper.
Because of the Heaviside step function in Eq. (16), analytical expressions for the frequency

response function cannot be obtained. However, for both the sinusoidal and the pulse-type
excitations defined previously, frequency response functions for semiactively controlled structure
can be constructed by numerically integrating the system equations and plotting the ratio of a
response amplitude to the excitation amplitude as a function of frequency ratio (o/op=opl/op).
In order to ensure that a harmonic steady state is achieved, the final time tf is selected as tf ¼
max½10p=op; 10p=o� for harmonic excitations. For pulse-type excitations, the final time tf for the
performance index is selected as tf=2Tpl. To compare the performances of the passive-tuned mass
damper and the optimal semiactive control in reducing the peak acceleration, velocity and
displacement of the primary structure, the non-dimensional acceleration, velocity and
displacement performance parameters are defined as

pa ¼
fTaðoÞgosa

fTaðoÞgptd

; pv ¼
fTvðoÞgosa

fTvðoÞgptd

; pd ¼
fTdðoÞgosa

fTdðoÞgptd

; ð37Þ

where frequency-dependent acceleration, velocity and displacement response transmissibility
ratios Ta(o), Tv(o) and Td(o) are expressed as [36,49]

TaðoÞ ¼
maxj.r1 þ .zj
maxj.zj

ðoÞ; TvðoÞ ¼
maxj’r1 þ ’zj
maxj’zj

ðoÞ; TdðoÞ ¼
maxjr1j
maxjzj

ðoÞ: ð38Þ

In Eq. (37), the subscripts ‘osa’ and ‘ptd’ denote the optimal semiactive control and the passive-
tuned mass damper, respectively. The smaller values of performance parameters indicate an
improvement in the efficiency of MR damper under optimal semiactive control. In the numerical
analysis, the optimized stiffness ((k0)opt) and damping ((c0)opt) coefficients of the passive-tuned
mass damper are calculated from Eqs. (12) and (13) and the mass ratios (m) are selected as 0.01,
0.05, 0.15, 0.30 and 0.50. The Lagrangian LðxðtÞ; uðtÞ; tÞ of the integral cost function (20) is selected
as the square of the absolute acceleration of the main structure and the terminal cost f is assumed
to be zero.

LðxðtÞ; uðtÞ; tÞ

¼ ½.r1ðtÞ þ .zðtÞ�2

¼ �
1

M
ðk1 þ k0Þr1 þ ðc1 þ c0Þ’r1 þ ðFmin þ ðFmax � FminÞHðuÞÞtanh

r2 � r1

dd

þ
’r2 � ’r1

vd

� �� �� �2

:

ð39Þ
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To be able to obtain the optimal control trajectories for MR damper, the iterative procedure
described previously is started with u0(t)=1 for all cases.
For the comparison of the performances of the passive-tuned mass damper and the optimal

semiactive control in reducing the peak response of the primary structure, frequency-dependent
non-dimensional acceleration, velocity and displacement performance parameters given by
Eq. (37) are calculated for harmonic excitations defined previously and shown in Figs. 2–4,
respectively.
As seen from these figures, an optimally controlled MR damper can outperform its equivalent

passive-tuned mass damper in terms of the acceleration, velocity and displacement performances
since the calculated performance parameters corresponding to different mass and frequency ratios
are less than one for all the investigated cases. However, for all the investigated mass ratios,
optimal acceleration, velocity and displacement performances of the semiactive-tuned mass
damper with MR damper at low frequencies (o/opE0.2) are not as effective as the resonance and
high frequency (o/opE2) performances. Figs. 2–4 show that the mass ratios in the range m=0.05–
0.15 result in the best acceleration, velocity and displacement performances at resonance at the
same time. These mass ratios also result in almost the best acceleration and velocity performances
at high frequencies. This result indicates that the appropriate mass ratio to achieve a good
acceleration and velocity performances at both resonance and high frequencies should be in the
range m=0.05–0.15. It should be noted here that the best displacement performance at high
frequencies can be obtained for m=0.30–0.50. However, in general, it is difficult to say that the
high mass ratios result in good performance especially for acceleration.
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Since the primary structure M will be subjected to large amplitudes of response at resonance, in
which the forcing frequency o is close to the natural frequency of the primary structure op, (o/
opE1), one is mainly interested in the resonance response of the investigated structure with MR
damper under optimal semiactive control. Fig. 5 presents the performance percentages of the
optimally controlled MR damper at resonance compared to passive-tuned mass damper. For
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example, 80% performance for Pa means that optimal semiactive control results in 80% reduction
in the peak acceleration response of the main structure compared to equivalent passive-tuned
mass damper. Consequently, as the performance parameter decreases, the corresponding
performance percentage increases.
As shown in Fig. 5, when the mass ratio is small (m=0.01), the general performance is not very

high. If the mass ratio is between m=0.05 and 0.15, the system reaches the maximum performance
for acceleration, velocity and displacement at the same time. Beyond this point, performance
parameters start to decrease. So, the choice of the appropriate mass ratio for the best acceleration,
velocity and displacement simultaneous resonance performance of the harmonic excitation is very
important. Otherwise, the performance level will decrease significantly while the optimal
semiactive case is still better than the equivalent passive case. However, it should also be noted
that the best simultaneous velocity and displacement performance at resonance can also be
achieved in a wider mass ratio range m=0.05–0.50. The frequency-dependent non-dimensional
acceleration, velocity and displacement performance parameters calculated for pulse excitations
are shown in Figs. 6–8, respectively.
As in the case of harmonic loading, performance parameters less than one indicate that the MR

damper outperforms its equivalent passive-tuned mass damper for all the investigated cases
corresponding to different mass and frequency ratios, provided that the control parameter u is
regulated optimally while the performance levels may vary for each of the cases. As shown in
Figs. 6–8, the optimal performance parameters for all the investigated mass ratios, especially the
acceleration and displacement performances, are much better in the frequency range
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0:6pðopl=opÞp1:4 than those obtained at low (opl/opE0.2) and high (opl/opE2) frequencies. It
is also noted that the best performance for pulse excitation in the range 0:6pðopl=opÞp1:4 is
achieved at resonance which is very important for vibration control applications. At low
frequencies, the general performance is low and the mass ratio has almost no effect on the
performance. At high frequencies, the best acceleration performance is obtained for m=0.50 while
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the best velocity and displacement performances are obtained for m=0.05. The mass ratio has no
significant effect on the performances in the range 0:6pðopl=opÞp1:4 except for velocity
performance at (opl/op)=1.4. Performance percentages at resonance for pulse excitations are
shown in Fig. 9.
It is clear that the general performance, especially the acceleration performance, is not effected

by the change in the mass ratio compared to harmonic excitation case. The most effective m range
for acceleration and velocity can be selected as m=0.01–0.30 and 0.15–0.50 for the displacement.
The minimum performance percentage is 57% for the displacement. So, the choice of the most
appropriate mass ratio at resonance for pulse excitations does not seem to be as important as in
harmonic case since the performance percentages for all m are very high at resonance.
It has been shown that the optimally controlled MR damper implemented in a semiactive-tuned

mass damper outperforms, especially at resonance, equivalent passive-tuned mass damper for
harmonic and pulse-type excitations. Since it is known that the earthquakes are naturally neither
purely impulsive nor harmonic, the optimal earthquake performance of MR damper should also
be investigated for several earthquakes to include the effect of the random characteristics of the
input disturbance. For this purpose, eight recorded earthquakes: RinaldiEW (Northridge
Earthquake; January 17, 1994; Rinaldi Station), RinaldiNS (Northridge Earthquake; January 17,
1994; Rinaldi Station), SylmarEW (Northridge Earthquake; January 17, 1994; Sylmar Station),
SylmarNS (Northridge Earthquake; January 17, 1994; Sylmar Station), KobeEW (Kobe
Earthquake; January 17, 1996; Kobe Station), KobeNS (Kobe Earthquake; January 17, 1996;
Kobe Station), ElcentroEW (Imperial Valley Earthquake; May 18, 1940; El Centro Station),
ElcentroNS (Imperial Valley Earthquake; May 18, 1940; El Centro Station) and a synthetic
earthquake generated using FFT technique, which are shown in Fig. 10 are used as seismic inputs
to the structure.
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Performance percentages of the optimal semiactive-tuned mass damper compared to equivalent
passive-tuned mass damper for these earthquakes are illustrated in Figs. 11–19. As presented in
Figs. 11–19, even though the optimally controlled semiactive-tuned mass damper with MR
damper outperforms its equivalent passive-tuned mass damper for the investigated earthquake
inputs, the performance levels are different. For instance, the best acceleration, velocity and
displacement performance percentages for the simulated earthquake (Fig. 11) are 18%, 16%
and 15%, respectively, while the corresponding performance percentages for KobeEW (Fig. 12)
and SylmarNS (Fig. 14) earthquakes are 60%, 49%, 46% and 50%, 27%, 47%, respectively.
For the KobeEW earthquake, all the performance levels increase until m reaches 0.15 and then

they start to decrease. The best performances for acceleration, velocity and displacement are
achieved at the same mass ratio m=0.15 which is optimal for this earthquake and the
corresponding time responses of the primary structure are demonstrated in Fig. 20 just for
illustrative purposes.
Optimal MR performance for the KobeNS earthquake (Fig. 13) is similar to that of the

KobeEW earthquake while the optimal mass ratio is m=0.30. In the SylmarNS earthquake case
(Fig. 14), all the performance percentages increase almost linearly with m and we get the best
performance for acceleration, velocity and displacement for the largest mass ratio m=0.50. The
SylmarEW case (Fig. 15) is similar to the KobeNS case and the optimal mass ratio is m=0.30. For
the ElcentroEW input (Fig. 16), the optimal mass ratio m=0.30 for the acceleration can be
assumed to be optimal also for velocity and displacement. Even though the optimal mass ratios
corresponding to the acceleration, velocity and displacement are the same for the previous
earthquakes, different optimal mass ratios are obtained for the ElcentroNS earthquake (Fig. 17);
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optimal mass ratios for the acceleration, velocity and displacement are 0.50, 0.30 and 0.15,
respectively. The optimal mass ratio for the RinaldiEW earthquake (Fig. 18) is m=0.30. Lastly, in
the RinaldiNS case (Fig. 19), the optimal mass ratios for the acceleration and displacement are the
same and equal to m=0.30, but for velocity m=0.50. For the previous earthquake cases
investigated, the optimal mass ratios are obtained in the range m=0.15–0.50 while the general
performance at small mass ratios m=0.01–0.05 are low. However, in the last case, while the
performance at m=0.05 is low, all the performance percentages at m=0.01 are very high compared
to previous results for m=0.01. It is also noted that the optimal acceleration performance
percentage is always greater than the velocity and displacement performance. It is an expected
result because the selected performance measure to be minimized is the squared absolute
acceleration of the primary structure.
The above given results show that the optimal MR damper performance is strongly related to

the earthquake characteristics. A mass ratio which is optimal for one earthquake may result in a
low performance for another earthquake, or the optimal mass ratio values corresponding to the
same earthquake may also be different for acceleration, velocity and displacement. Exact optimal
values can only be calculated based on the exact a priori knowledge of the earthquake which is not
possible in practice. However, numerical results indicate that in general, the optimal mass ratios
are in the range m=0.15–0.50, while the semiactive-tuned mass damper still outperforms
equivalent passive damper even for non-optimal mass ratios. Assuming that the optimal design
parameters are almost known, one should decide on an appropriate causal sub-optimal control
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scheme applicable to non-linear structure. It is concluded from the previous results that the
proposed control schemes must take into account the unknown disturbance, or at least the near
future disturbance information through observers.
Exact optimal solutions may help one to understand how to include the disturbance into

control schemes. The effectiveness of the most of the proposed active and semiactive control laws
are evaluated and measured by comparing the peak controlled and uncontrolled (or passive)
structural responses. However, the optimality level of the proposed control scheme must also be
measured by comparing with the exact optimal solutions. Numerical solution of the Euler–
Lagrange equations is easy for the linear systems with quadratic cost function because all of the
needed partial derivatives are independent of the state and control perturbations [35]. But,
because the intrinsically non-linear nature of semiactive devices, semiactively controlled structures
are non-linear and the corresponding state and costate equations are coupled. Since the numerical
solution of the Euler–Lagrange equations for non-linear systems is not as easy as linear systems,
exact optimal solutions of non-linear systems are not given in general. However, there are some
important works that use the optimal active control laws to calculate the control parameter of the
semiactive device [44,50]. The implementable optimal active control laws such as classical closed-
loop control and instantaneous optimal control are in fact not truly optimal in the sense that they
ignore future disturbances [51,52]. So, although it is known that the exact optimal solutions
cannot be implemented, based on the detailed analysis of the optimal response and control
trajectories and the possible relations between them, it may be possible to get some important
hints from the optimal data in developing some implementable very simple causal rules in the

ARTICLE IN PRESS

0 0 .1 0 .2 0 .3 0 .4 0 .5
0

10

20

30

40

50

60

M ass ra tio
0 0 .1 0 .2 0 .3 0 .4 0 .5

0

10

20

30

40

50

60

M ass ra tio
0 0 .1 0 .2 0 .3 0 .4 0 .5

0

10

20

30

40

50

60

M ass ra tio

Pa
(% ) P

v
(% ) P

d
(% )

Fig. 13. Performance of the optimal semiactive-tuned mass damper compared to equivalent passive-tuned mass damper

for KobeNS earthquake.

U. Aldemir / Journal of Sound and Vibration 266 (2003) 847–874 865



following possible forms:

u ¼ uðr1Þ; u ¼ uð’r1Þ; u ¼ uð’r1 þ ’zÞ; u ¼ uð.r1 þ .zÞ: ð40Þ

Even though it is beyond the scope of this paper to derive new causal sub-optimal control
algorithms, optimal variations of the control parameter u with time and the measurable response
quantities of the main structure subject to sinusoidal input (resonance case) and the KobeEW
earthquake are illustrated in Figs. 21 and 22, respectively, to investigate if it is possible to derive
any closed form expression for the above given simple causal control policies.
As seen in Figs. 21 and 22, the relations between the optimal control u and the measurable

response quantities of the main structure are too complex to be expressed as a closed form
function even for simple harmonic excitation. So, it may be possible, but a challenging work to
derive causal sub-optimal control policies that can be implemented in practice based on the
generalizable information extracted from the exact optimal solutions.

7. Conclusions

The optimal seismic response behavior of a single-degree-of-freedom structure with a
semiactive-tuned mass damper incorporating an MR damper has been investigated and compared
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to an equivalent passive-tuned mass damper when the structure is excited by a broad class of
excitations including sinusoidal and pulse excitations, eight real earthquakes and a simulated
ground motion. Numerical solution to the two-point boundary-value problem resulting from the
application of the optimal control theory is performed by using a gradient approach in which the
state and costate equations are solved exactly by iterative modification of the control function.
The optimal control strategy minimizes the integral of the squared absolute accelerations of the
primary structure subject to the constraint that the non-linear equations of motion are
satisfied.
Numerical results for the calculated acceleration, velocity and displacement performance

parameters show that (a) an optimally controlled MR damper always outperforms an equivalent
passive-tuned mass damper with optimized stiffness and damping parameters for all the
investigated excitations, (b) the best performance for harmonic and pulse-type excitations is
achieved at resonance which is very important for vibration control applications.

For the sinusoidal input: (a) The effectiveness of the semiactive-tuned mass damper with an MR
damper at low frequencies (o/opE0.2) is not significant, independent from the mass of the
auxiliary system, compared to especially the resonance performances.
(b) The best acceleration, velocity and displacement performances are achieved at resonance in

the range of m=0.05–0.15 at the same time. This range can also be used to achieve acceptable
acceleration and velocity performances at high frequencies (o/opE2.0).
(c) In general, it is difficult to say that the high mass ratios result in good performance especially

for acceleration although the best displacement performance at high frequencies can be obtained
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for m=0.30–0.50. For the best simultaneous velocity and displacement performance at resonance,
the mass ratio range can be selected as m=0.05–0.50.
(d) For the best acceleration, velocity and displacement, simultaneous resonance performance

for the harmonic excitation, the choice of the appropriate m range is very important. A wrong
choice for m will result in a significant decrease in performance level.

For pulse-type excitations: (a) The acceleration and displacement performances in the frequency
range 0:6pðopl=opÞp1:4 are much better than those at low and high frequencies for all the
investigated mass ratios.
(b) The mass ratio has almost no effect on the low-frequency performances, which are low. The

mass ratio m=0.50 results in the best acceleration performance at high frequencies, while the best
velocity and displacement performances are achieved for m=0.05.
(c) The performances in the range 0:6pðopl=opÞp1:4; except for velocity performance at (opl/

op)=1.4, are not effected significantly by the change in the mass ratio. For the best resonance
performance of pulse excitations, the most effective m range can be selected as m=0.01–0.30 for
acceleration and velocity; and m=0.15–0.50 for the displacement.
(d) It is noted that the performance percentages for all m are very high at resonance. It indicates

that the choice of the most appropriate mass ratio at resonance for pulse excitations does not seem
to be as important as in harmonic case.
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The optimal earthquake response of MR damper are also investigated over a wide range of
recorded earthquakes including also a synthetic one because the earthquakes are naturally neither
purely impulsive nor harmonic. The numerical simulation results show that it is possible to find
one or more optimal mass ratios for acceleration, velocity and displacement performances of the
same earthquake while in general, the optimal mass ratios are in the range m=0.15–0.50. It is
noted that the MR damper outperforms equivalent passive damper even for non-optimal mass
ratios. It is also shown that the optimal response behavior of MR damper depends strongly on the
random nature of earthquakes. This strong dependency indicates that the algorithms that
incorporate the disturbance into causal sub-optimal control design schemes may offer additional
performance. Exact optimal solutions may have some important information about how to
incorporate the disturbance into control schemes. Simulation results show that it is a challenging
work to get these hints from the optimal response date. However, the efforts must be underway to
investigate this possibility.
While the studied optimal semiactive controller is not realizable without the a priori knowledge

of the excitation, it provides a performance goal for the comparison of other proposed causal sub-
optimal semiactive control policies and gives the best performance that can be achieved by the
investigated semiactive device. It is concluded that the optimal MR damper implemented in a
semiactive-tuned mass damper has a great potential in suppressing the structural vibrations
induced by a wide range of loading conditions and this potential encourages the researches to
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develop sub-optimal causal control algorithms which are capable of approaching the exact
optimal performance by incorporating the disturbance into control design.
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